Image Quality Assessment Techniques Show Improved Training and Evaluation of Autoencoder Generative Adversarial Networks

نویسندگان

  • Michael O. Vertolli
  • Jim Davies
چکیده

We propose a training and evaluation approach for autoencoder Generative Adversarial Networks (GANs), specifically the Boundary Equilibrium Generative Adversarial Network (BEGAN), based on methods from the image quality assessment literature. Our approach explores a multidimensional evaluation criterion that utilizes three distance functions: an l1 score, the Gradient Magnitude Similarity Mean (GMSM) score, and a chrominance score. We show that each of the different distance functions captures a slightly different set of properties in image space and, consequently, requires its own evaluation criterion to properly assess whether the relevant property has been adequately learned. We show that models using the new distance functions are able to produce better images than the original BEGAN model

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of generative adversarial networks for automatic text-to-image generation

This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...

متن کامل

BEGAN: Boundary Equilibrium Generative Adversarial Networks

We propose a new equilibrium enforcing method paired with a loss derived from the Wasserstein distance for training auto-encoder based Generative Adversarial Networks. This method balances the generator and discriminator during training. Additionally, it provides a new approximate convergence measure, fast and stable training and high visual quality. We also derive a way of controlling the trad...

متن کامل

Context-Aware Semantic Inpainting

Recently image inpainting has witnessed rapid progress due to generative adversarial networks (GAN) that are able to synthesize realistic contents. However, most existing GAN-based methods for semantic inpainting apply an autoencoder architecture with a fully connected layer, which cannot accurately maintain spatial information. In addition, the discriminator in existing GANs struggle to unders...

متن کامل

Compressed Sensing MRI Reconstruction with Cyclic Loss in Generative Adversarial Networks

Compressed Sensing MRI (CS-MRI) has provided theoretical foundations upon which the time-consuming MRI acquisition process can be accelerated. However, it primarily relies on iterative numerical solvers which still hinders their adaptation in time-critical applications. In addition, recent advances in deep neural networks have shown their potential in computer vision and image processing, but t...

متن کامل

Compressed Sensing MRI Reconstruction using a Generative Adversarial Network with a Cyclic Loss

Compressed Sensing MRI (CS-MRI) has provided theoretical foundations upon which the time-consuming MRI acquisition process can be accelerated. However, it primarily relies on iterative numerical solvers which still hinders their adaptation in time-critical applications. In addition, recent advances in deep neural networks have shown their potential in computer vision and image processing, but t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1708.02237  شماره 

صفحات  -

تاریخ انتشار 2017